Package: virtualspecies (via r-universe)

August 23, 2024

Type Package

Title Generation of Virtual Species Distributions

Version 1.6

Author Boris Leroy [cre, aut], Christine N. Meynard [ctb], Celine Bellard [ctb], Franck Courchamp [ctb], Robin Delsol [ctb], Willson Gaul [ctb]

Maintainer Boris Leroy <leroy.boris@gmail.com>

Description Provides a framework for generating virtual species distributions, a procedure increasingly used in ecology to improve species distribution models. This package integrates the existing methodological approaches with the objective of generating virtual species distributions with increased ecological realism.

Encoding UTF-8

License GPL ($>=2.0$)

```
Depends R (>= 3.5), terra
```
Imports ade4, graphics, grDevices, rnaturalearth, raster, stats, utils, viridis

URL <https://borisleroy.com/virtualspecies/>

BugReports <https://github.com/Farewe/virtualspecies/issues>

RoxygenNote 7.2.3

Repository https://farewe.r-universe.dev

RemoteUrl https://github.com/farewe/virtualspecies

RemoteRef HEAD

RemoteSha 2263b8138f6f74567c0ec8889e59f585d80bf5e1

Contents

virtualspecies-package

Generation of virtual species

Description

This package allows generating virtual species distributions, for example for testing species distribution modelling protocols. For a complete tutorial, see borisleroy.com/virtualspecies

Details

The process of generating a virtual species distribution is divided into four major steps.

- 1. Generate a virtual species distributions from environmental variables. This can be done by
	- defining partial response functions to each environmental variable, and then combining them to compute the overall environmental suitability, with [generateSpFromFun](#page-17-1)
	- computing a PCA among environmental variables, and simulating the response of the species along the two first axes of the PCA with [generateSpFromPCA](#page-20-1)

This step can be randomised with [generateRandomSp](#page-11-1)

- 2. Convert the virtual species distribution into presence-absence, with [convertToPA](#page-3-1)
- 3. Facultatively, introduce a distribution bias with [limitDistribution](#page-23-1)
- 4. Sample occurrence points (presence only or presence-absence) inside the virtual species distribution, either randomly or with biases, with [sampleOccurrences](#page-34-1)

There are other useful functions in the package:

• [formatFunctions](#page-9-1): this is a helper function to format and illustrate the response functions as a correct input for [generateSpFromFun](#page-17-1)

betaFun 3

- [plotResponse](#page-28-1): to visualise the species-environment relationship of the virtual species
- [removeCollinearity](#page-32-1): this function can be used to remove collinearity among variables of a stack by selecting a subset of non-colinear variables
- [synchroniseNA](#page-39-1): this function can be used to synchronise NA values among layers of a stack

This packages makes use of different other packages:

- This package makes extensive use of the package [terra](#page-0-0) to obtain spatialised environmental variables, and produce spatialised virtual species distributions.
- [ade4](#page-0-0) is used to generate species with a PCA approach.
- [rnaturalearth](#page-0-0) is used to obtain free world shapefiles, in order to create dispersal limitations and sampling biases.

Author(s)

Boris Leroy <leroy.boris@gmail.com> with help from C. N. Meynard, C. Bellard & F. Courchamp Maintainer: Boris Leroy <leroy.boris@gmail.com>

References

Leroy, B. et al. 2016. virtualspecies, an R package to generate virtual species distributions. Ecography. 39(6):599-607

betaFun *Beta response function*

Description

Generation of a beta response curve (see references) according to the equation:

 $k * (x - p1)^{\alpha} * (p2 - x)^{\gamma}$

k is automatically estimated to have a maximum value of P equal to 1.

Usage

```
betaFun(x, p1, p2, alpha, gamma)
```
Arguments

Details

p1 and p2 can be seen as the upper and lower critical threshold of the curve. alpha and gamma control the shape of the curve near p1 and p2, respectively. When alpha = gamma, the curve is symmetric. Low values of alpha and gamma result in smooth $($ 1 $)$ to plateau $($ $<$ 0.01 $)$ curves. Higher values result in peak (> 10) curves.

When alpha < gamma, the curve is skewed to the right. When gamma < alpha, the curve is skewed to the left.

Value

a numeric value or vector resulting from the function

Author(s)

Boris Leroy <leroy.boris@gmail.com>

Maintainer: Boris Leroy <leroy.boris@gmail.com>

References

Oksanen, J. & Minchin, P.R. (2002). Continuum theory revisited: what shape are species responses along ecological gradients? *Ecological Modelling* 157:119-129.

See Also

[linearFun](#page-26-1), [quadraticFun](#page-31-1), [custnorm](#page-8-1)

Examples

```
temp \leq -seq(-10, 40, length = 100)# A curve similar to a thermal performance curve
P <- betaFun(x = temp, p1 = 0, p2 = 35, alpha = 0.9, gamma = 0.08)
plot(P \sim temp, type = "l")
```


Convert a virtual species distribution (or a suitability raster) into *presence-absence*

Description

This functions converts the probabilities of presence from the output of [generateSpFromFun](#page-17-1), [generateSpFromPCA](#page-20-1), [generateRandomSp](#page-11-1) or a suitability raster into a presence-absence raster. The conversion can be threshold-based, or based on a probability of conversion (see details).

convertToPA 5

Usage

```
convertToPA(
 x,
 PA.method = "probability",
 prob.method = "logistic",
 beta = "random",alpha = -0.05,
 a = NULL,b = NULL,species.prevalence = NULL,
 plot = TRUE
)
```
Arguments

Details

[Online tutorial for this function](http://borisleroy.com/virtualspecies_tutorial/04-presenceabsence.html)

The conversion of environmental suitability into presence - absence used to be performed by selecting a threshold above which presence always occurs, and never below. However, this approach may is unrealistic because species may sometime be present in areas with a low probability of occurrence, or be absent from areas with a high probability of occurrence. In addition, when using a threshold you erase the previously generated response shapes: it all becomes threshold. Thus, this threshold approach should be avoided.

A more realistic conversion consists in converting environmental suitability into presence - absence with a probability function (see references). Such a probability conversion can be performed with two different methods here:

- 1. Using a logistic transformation of environmental suitability (see [logisticFun](#page-27-1)). A logistic function on the other hand, will ensure that the simulated probability is within the 0-1 range and allow easy control of species prevalence. However, the logistic function will also flatten out the relationship at the extreme suitability values, and narrow or broaden the intermediate probability values depending on the slope of the logistic curve
- 2. Using a linear transformation of environmental suitability. A linear transformation will preserve the shape of the originally simulated occurrence-environment relationships, uniformly increasing or decreasing the probabilities of occurrence across the landscape.

 $\frac{1}{\pi}$ note -

If the Virtual Species study aims at comparing simulated and predicted probability values, it is important to recover the correct simulated probability instead of directly using the initial suitability function.

Therefore, the function stores the probability of occurrence in the output list, under the object probability.of.occurrence. The initial suitability function (before logistic or linear conversion) will still be stored in the output list as suitab.raster.

————————————————————————– PROBABILISTIC CONVERSION - LOGISTIC METHOD

To perform the logistic transformation of environmental suitability you have to define two of the three following parameters:

- beta: the 'threshold' of the logistic function (i.e. the inflexion point. It should normaly be in the range of values of your environmental suitability.)
- alpha: the slope of the logistic function. It should generally be in value equal to something like 1/20 or 1/10 of your environmental suitability range
- species.prevalence: the proportion of sites in which the species occur

If you provide beta and alpha, the species.prevalence is calculated immediately calculated after conversion into presence-absence.

On the other hand, if you provide species. prevalence and either beta or alpha, the function will try to determine alpha (if you provided beta) or beta (if you provided alpha).

The relationship between species prevalence, alpha and beta is dependent on the available range of environmental conditions (see Meynard and Kaplan, 2011 and especially the Supporting Information). As a consequence, the desired species prevalence may not be available for the defined alpha or beta. In these conditions, the function will retain the alpha or beta which provides the closest prevalence to your species.prevalence, but you may also provide another value of alpha or beta to obtain a closer prevalence.

————————————————————————– PROBABILISTIC CONVERSION - LINEAR METHOD

To perform the linear transformation of environmental suitability you have to define *one* of the following:

- nothing in which case your input environmental suitability will be used as the probability of occurrence for the Bernoulli trial (it is equivalent to defining a slope a of 1 and intercept b of (0)
- the coefficients of the linear regression: slope a and intercept b. The transformed environmental suitability will be used as the probability of occurrence for the Bernoulli trial.
- species.prevalence: the proportion of sites in which the species occur. In this case, the function will try to find coefficients of a linear regression which results in the requested species.prevalence (see below).

Method used to find coefficients of a linear regression which results in the requested species. prevalence:

- 1. The simplest linear transformation of habitat suitability would be to just multiply the raw suitability by a constant. For example, if the raw average suitability in the area is 0.04, it means an expected prevalence of 0.40. To to go from this expected prevalence of 0.04 to an expected prevalence of 0.4, we can just multiply the raw suitability by 10. It is the default choice, unless it results in probabilities superior to 1 or raw suitability have values below 0, in which case the function proceeds to method 2.
- 2. If it does not work, then we look at the line that passes through (min suitability, 0) and (mean suitability, desired prevalence). For this line, we only need to ensure that the maximum probability of occurence is lower than 1. Otherwise, the function proceeds to method 3.
- 3. If method 2 fails, then we test the line going through (mean suitability, desired prevalence) and (max suitability, 1). If the minimum probability resulting from this line is greater than 0, then this method is correct.

One of these 3 lines should always work. In fact, one of the last two has to work, and it does not hurt to try the first one which is simpler.

In all cases, the species.prevalence indicated in the output is the prevalence measured on the output presence-absence map.

Value

a list containing 6 elements:

- approach: the approach used to generate the species, *i.e.*, "response"
- details: the details and parameters used to generate the species

————————————————————————–

- suitab.raster: the environmental suitability of your virtual species, as a Raster object
- probability.of.occurrence: the probability of occurrence of your species, based on the chosen transformation of environmental suitability, as a Raster object
- PA.conversion: the parameters used to convert the suitability into presence-absence
- pa.raster: the presence-absence map, as a Raster object containing 0 (absence) / 1 (presence) / NA

The structure of the virtualspecies object can be seen using str()

Note

The approximation of alpha or beta to the chosen species.prevalence may take time if you work on very large rasters.

Author(s)

Boris Leroy <leroy.boris@gmail.com>

with help from C. N. Meynard, D.M. Kaplan, C. Bellard & F. Courchamp

References

Meynard C.N. & Kaplan D.M. 2013. Using virtual species to study species distributions and model performance. *Journal of Biogeography* 40:1-8

Meynard C.N. & Kaplan D.M. 2011. The effect of a gradual response to the environment on species distribution model performance. *Ecography* 35:499-509

```
# Create an example stack with two environmental variables
a \leq -\text{matrix}(\text{rep}(\text{dnorm}(1:100, 50, sd = 25)),nrow = 100, ncol = 100, byrow = TRUE)
env <- c(rast(a * dnorm(1:100, 50, sd = 25)),rast(a * 1:100))
names(env) <- c("variable1", "variable2")
# Creation of the parameter list
parameters \le formatFunctions(variable1 = c(fun = 'dnorm', mean = 0.00012,
                                            sd = 0.0001,
                              variable2 = c(fun = 'linearFun', a = 1, b = 0)sp1 <- generateSpFromFun(env, parameters, plot = FALSE)
# Conversion into presence-absence with a threshold-based approach
convertToPA(sp1, PA.method = "threshold", beta = 0.2, plot = TRUE)convertToPA(sp1, PA.method = "threshold", beta = "random", plot = TRUE)
# Conversion into presence-absence with a probability approach using logistic
# method
convertToPA(sp1, PA.method = "probability", beta = 0.4,
              alpha = -0.05, plot = TRUE)
convertToPA(sp1, PA.method = "probability", beta = "random",
              alpha = -0.1, plot = TRUE)
# Conversion into presence-absence with a probability approach using linear
# method
convertToPA(sp1, PA.method = "probability", prob.method = "linear",
            a = 1, b = 0, plot = TRUE)
# Conversion into presence-absence by choosing the prevalence
# Threshold method
convertToPA(sp1, PA.method = "threshold",
```
custnorm **9**

```
species.prevalence = 0.3, plot = TRUE)
# Logistic method, with alpha provided
convertToPA(sp1, PA.method = "probability", alpha = -0.1,
              species.prevalence = 0.2, plot = TRUE)
# Logistic method, with beta provided
convertToPA(sp1, PA.method = "probability", beta = 0.5,
             species.prevalence = 0.2, alpha = NULL,
             plot = TRUE)
# Linear method
convertToPA(sp1, PA.method = "probability", prob.method = "linear",
            species.prevalence = 0.2,
            plot = TRUE)
convertToPA(sp1, PA.method = "probability", prob.method = "linear",
            species.prevalence = 0.5,
            plot = TRUE)
convertToPA(sp1, PA.method = "probability", prob.method = "linear",
            species.prevalence = 0.8,
            plot = TRUE)
# Plot the output Presence-Absence raster only
sp1 <- convertToPA(sp1, plot = FALSE)
plot(sp1$pa.raster)
```


custnorm *Normal function defined by extremes*

Description

A modified version of the normal function based on three parameters:

- the mean
- the absolute difference between the mean and extreme values
- the percentage of area under the curve between the specified extreme values

See the example for an easier understanding.

Usage

```
custnorm(x, mean, diff, prob)
```
Arguments

Value

a numeric value or vector resulting from the function

Author(s)

Boris Leroy <leroy.boris@gmail.com>, Florian David

Maintainer: Boris Leroy <leroy.boris@gmail.com>

Examples

```
# Let's define the response of a species to temperature which
# - has an optimum at 20 degrees C
# - occurs 99% of the time between 13 and 27 degrees C.
# In that case, mean = 20, diff = 7, and prob = 0.99# First, we generate an arbitrary temperature variable
# between 0 and 30 degrees C
temp <- seq(0, 30, length = 1000)
# Then, we calculate the response to this variable with the chosen values
response \leq custnorm(x = temp, mean = 20, diff = 7, prob = .99)
plot(response ~ temp, type = "l")
```


Description

This function is a helper function to simplify the formatting of functions for [generateSpFromFun](#page-17-1)

Usage

```
formatFunctions(x = NULL, rescale = TRUE, ...)
```
Arguments

formatFunctions 11

Details

This function formats the parameters argument of [generateSpFromFun](#page-17-1). For each environmental variable, provide a vector containing the function name, and its arguments.

For example, assume we want to generate a species responding to two environmental variables bio1 and bio2.

- The response to bio1 is a normal response ([dnorm](#page-0-0)), of mean 1 and standard deviation 0.5.
- The response to bio2 is a linear response ([linearFun](#page-26-1)), of slope (a) 2 and intercept (b) 5.

The correct writing is:

```
formatFunctions( bio1 = c(fun = "donorm", mean = 1, sd = 0.5),bio2 = c(fun = "linearFun",a = 2, b = 5)
```
Warning

Do not use 'x' as a name for your environmental variables.

Author(s)

Boris Leroy <leroy.boris@gmail.com> with help from C. N. Meynard, C. Bellard & F. Courchamp

Examples

```
my.parameters <- formatFunctions(variable1 = c(fun = 'dnorm',
                                           mean = 0.00012, sd = 0.0001),
                             variable2 = c(fun = 'linearFun', a = 1, b = 0)
```

```
my.parameters <- formatFunctions(bio1 = c(fun = "logisticFun",
                                         alpha = -12.7, beta = 68),
                                 bio2 = c(fun = "linearFun",a = -0.03, b = 191.2),
                                 bio3 = c(fun = "dnorm",mean = 86.4, sd = 19.1),
                                 bio4 = c(fun = "logisticFun",alpha = 2198.5, beta = 11381.4))
## Not run:
# An example using worldclim data
bio1.4 <- getData('worldclim', var='bio', res=10)[[1:4]]
my.parameters < - formatFunctions(x = bio1.4, ...)bio1 = c(fun = "logisticFun",alpha = -12.7, beta = 68),
                                 bio2 = c(fun = "linearFun",a = -0.03, b = 191.2),
                                 bio3 = c(fun = "dnorm",mean = 86.4, sd = 19.1),
```
bio4 = $c(fun = "logisticFun",$

alpha = 2198.5, beta = 11381.4))

End(Not run)

Description

This function generates randomly a virtual species distribution.

Usage

```
generateRandomSp(
  raster.stack,
  approach = "automatic",
  rescale = TRUE,
  convert.to.PA = TRUE,
  relations = c("gaussian", "linear", "logistic", "quadratic"),
  rescale.each.response = TRUE,
  realistic.sp = TRUE,
  species.type = "multiplicative",
  niche.breadth = "any",
  sample.points = FALSE,
  nb.points = 10000,
 PA.method = "probability",
  alpha = -0.1,
  adjust.alpha = TRUE,
 beta = "random",species.prevalence = NULL,
 plot = TRUE
\mathcal{L}
```
Arguments

rescale.each.response TRUE or FALSE. If TRUE, the individual responses to each environmental variable are rescaled between 0 and 1

- realistic.sp [response approach] TRUE or FALSE. If TRUE, the function will try to define responses that can form a viable species. If FALSE, the responses will be randomly generated (may result in environmental conditions that do not co-exist).
- species.type [response approach] "additive" or "multiplicative". Defines how the final probability of presence is calculated: if "additive", responses to each variable are summed; if "multiplicative", responses are multiplied. See [generateSpFromFun](#page-17-1)
- niche.breadth [pca approach] "any", "narrow" or "wide". This parameter defines how tolerant is the species regarding environmental conditions by adjusting the standard deviations of the gaussian functions. See [generateSpFromPCA](#page-20-1)
- sample.points [pca approach] TRUE of FALSE. If you have a large raster file then use this parameter to sample a number of points equal to nb.points.
- nb.points [pca approach] a numeric value. Only useful if sample.points = TRUE. The number of sampled points from the raster, to perform the PCA. A too small value may not be representative of the environmental conditions in your raster.
- PA.method "threshold" or "probability". If "threshold", then occurrence probabilities are simply converted into presence-absence according to the threshold beta. If "probability", then probabilities are converted according to a logistic function of threshold beta and slope alpha.
- alpha NULL or a negative numeric value. Only useful if PA.method = "probability". The value of alpha will shape the logistic function transforming occurrences into presence-absences. See [logisticFun](#page-27-1) and examples therein for the choice of alpha
- adjust.alpha TRUE or FALSE. Only useful if rescale = FALSE. If adjust.alpha = TRUE, then the value of alpha will be adjusted to an appropriate value for the range of suitabilities.
- beta "random", a numeric value in the range of your probabilities or NULL. This is the threshold of conversion into presence-absence $(=$ the inflexion point if PA.method = "probability"). If "random", a numeric value will be randomly generated within the range of probabilities of occurrence. See [convertToPA](#page-3-1)

species.prevalence

```
NULL or a numeric value between 0 and 1. The species prevalence is the propor-
tion of sites actually occupied by the species. See convertToPA
```
plot TRUE or FALSE. If TRUE, the generated virtual species will be plotted.

Details

[Online tutorial for this function](http://borisleroy.com/virtualspecies_tutorial/05-randomspecies.html)

This function generate random virtual species, either using a PCA approach, or using a response approach. In case of a response approach, only four response functions are currently used: gaussian, linear, logistic and quadratic functions.

Note that in case of numerous predictor variables, the "response" approach will not work well because it will often generate contradicting response functions (e.g., mean annual temperature optimum at degrees C and temperature of the coldest month at 10 degrees C). In these case, it is advised to use the PCA approach (by default, a PCA approach will be used if there are more than 6 predictor variables).

If rescale.each.response = TRUE, then the probability response to each variable will be normalised between 0 and 1 according to the following formula: Prescaled = $(P - min(P)) / (max(P)$ min (P)). Similarly, if rescale = TRUE, the final environmental suitability will be rescaled between 0 and 1 with the same formula.

By default, the function will perform a probabilistic conversion into presence- absence, with a randomly chosen beta threshold. If you want to customise the conversion parameters, you have to define two of the three following parameters:

- beta: the 'threshold' of the logistic function (i.e. the inflexion point)
- alpha: the slope of the logistic function
- species.prevalence: the proportion of sites in which the species occur

If you provide beta and alpha, the species.prevalence is calculated immediately calculated after conversion into presence-absence.

As explained in [convertToPA](#page-3-1), if you choose choose a precise species.prevalence, it may not be possible to reach this particular value because of the availability of environmental conditions. Several runs may be necessary to reach the desired species.prevalence.

Value

a list with 3 to 5 elements (depending if the conversion to presence-absence was performed):

- approach: the approach used to generate the species, *i.e.*, "response"
- details: the details and parameters used to generate the species
- suitab.raster: the virtual species distribution, as a SpatRaster object containing the environmental suitability)
- PA.conversion: the parameters used to convert the suitability into presence-absence
- pa. raster: the presence-absence map, as a SpatRaster object containing 0 (absence) / 1 (presence) / NA

The structure of the virtualspecies can object be seen using str()

Author(s)

Boris Leroy <leroy.boris@gmail.com>

with help from C. N. Meynard, C. Bellard & F. Courchamp

```
# Create an example stack with six environmental variables
a \le - matrix(rep(dnorm(1:100, 50, sd = 25)),
           nrow = 100, ncol = 100, byrow = TRUE)
env <- c(rast(a * dnorm(1:100, 50, sd = 25)),
```


```
rast(a * 1:100),
        rast(a * logisticFun(1:100, alpha = 10, beta = 70)),
        rast(t(a)),
        rast(exp(a)),
        rast(log(a)))
names(env) <- paste("Var", 1:6, sep = "")
# More than 6 variables: by default a PCA approach will be used
generateRandomSp(env)
# Manually choosing a response approach: this may fail because it is hard
# to find a realistic species with six distinct responses to six variables
generateRandomSp(env, approach = "response")
# Randomly choosing the approach
generateRandomSp(env, approach = "random")
```

```
generateSpFromBCA Generate a virtual species distribution from a Between Component
                        Analysis of environmental variables
```
Description

A Between Component Analysis is similar to a PCA, except that two sets of environmental conditions (e.g. current and future) will be used. This function is useful to generate species designed to test the extrapolation capacity of models, e.g. for climate change extrapolations

Usage

```
generateSpFromBCA(
  raster.stack.current,
  raster.stack.future,
  rescale = TRUE,
  niche. breadth = "any",means = NULL,
  sds = NULL,
  bca = NULL,sample.points = FALSE,
  nb.points = 10000,
  plot = TRUE
)
```
Arguments

Details

This function generates a virtual species distribution by computing a Between Component Analysis based on two different stacks of environmental variables. The response of the species is then simulated along the two first axes of the BCA with gaussian functions in the same way as in [generateSpFromPCA](#page-20-1).

A Between Component Analysis is used to separate two sets of environmental conditions. This function proceeds in 4 steps:

- 1. A Principal Component Analysis is generated based on both set of environmental conditions
- 2. A BCA of this PCA is generated using the function [bca](#page-0-0) from package ade4. Note that at this step we choose one random point from raster.stack.future, and we use this single point as if it was a third set of environmental conditions for the BCA. This trick allows us to subtly change the shape of the bca in order to generate different types of conditions.
- 3. Gaussian responses to the first two axes are computed
- 4. These responses are multiplied to obtain the final environmental suitability

If rescale = TRUE, the final environmental suitability is rescaled between 0 and 1, with the formula $\frac{\text{(val - min)}}{\text{(max - min)}}$.

generateSpFromBCA 17

The shape of gaussian responses can be randomly generated by the function or defined manually by choosing means and sds. The random generation is constrained by the argument niche.breadth, which controls the range of possible standard deviation values. This range of values is based on a fraction of the axis:

- "any": the standard deviations can have values from 1% to 50% of axes' ranges. For example if the first axis of the PCA ranges from -5 to $+5$, then sd values along this axis can range from 0.1 to 5.
- "narrow": the standard deviations are limited between 1% and 10% of axes' ranges. For example if the first axis of the PCA ranges from -5 to $+5$, then sd values along this axis can range from 0.1 to 1.
- "wide": the standard deviations are limited between 10% and 50% of axes' ranges. For example if the first axis of the PCA ranges from -5 to $+5$, then sd values along this axis can range from 1 to 5.

If a bca object is provided, the output bca object will contain the new environments coordinates along the provided bca axes.

Value

a list with 4 elements:

- approach: the approach used to generate the species, *i.e.*, "bca"
- details: the details and parameters used to generate the species
- suitab.raster.current: the virtual species distribution, as a SpatRaster object containing the current environmental suitability
- suitab.raster.future: the virtual species distribution, as a SpatRaster object containing the future environmental suitability

The structure of the virtualspecies object can be seen using str()

Note

To perform the BCA, the function has to transform rasters into matrices. This may not be feasible if the chosen rasters are too large for the computer's memory. In this case, you should run the function with sample.points = TRUE and set the number of points to sample with nb.points.

Author(s)

Robin Delsol, Boris Leroy

Maintainer: Boris Leroy <leroy.boris@gmail.com>

See Also

[generateSpFromFun](#page-17-1) to generate a virtual species with the responses to each environmental variables.[generateSpFromPCA](#page-20-1) to generate a virtual species with the PCA of environmental variables.

Examples

```
# Create two example stacks with four environmental variables each
a \leq -\text{matrix}(\text{rep}(\text{dnorm}(1:100, 50, sd = 25)),nrow = 100, ncol = 100, byrow = TRUE)
env1 <- c(rast(a * dnorm(1:100, 50, sd = 25)),
          rast(a * 1:100),
          rast(a),
          rast(t(a)))names(env1) <- c("var1", "var2", "var3", "var4")
plot(env1) # Illustration of the variables
b \le - matrix(rep(dnorm(1:100, 25, sd = 50)),
            nrow = 100, ncol = 100, byrow = TRUE)
env2 <- c(rast(b * dnorm(1:100, 50, sd = 25)),rast(b * 1:100),
          rast(b),
          rast(t(b)))names(env2) <- c("var1", "var2", "var3", "var4")
plot(env2) # Illustration of the variables
# Generating a species with the BCA
generateSpFromBCA(raster.stack.current = env1, raster.stack.future = env2)
# The left part of the plot shows the BCA and the response functions along
# the two axes.
# The top-right part shows environmental suitability of the virtual
# species in the current environment.
# The bottom-right part shows environmental suitability of the virtual
# species in the future environment.
# Defining manually the response to axes
generateSpFromBCA(raster.stack.current = env1, raster.stack.future = env2,
           means = c(-2, 0),
           sds = c(0.6, 1.5)
```


Description

This function generates a virtual species distribution from a stack of environmental variables and a defined set of responses to each environmental parameter.

generateSpFromFun 19

Usage

```
generateSpFromFun(
  raster.stack,
  parameters,
  rescale = TRUE,
  formula = NULL,species.type = "multiplicative",
  rescale.each.response = TRUE,
  plot = FALSE
\mathcal{L}
```
Arguments

Details

[Online tutorial for this function](http://borisleroy.com/virtualspecies_tutorial/02-response.html)

This function proceeds in two steps:

1. The response to each environmental variable is calculated with the functions provided in parameters. This results in a suitability of each variable.

By default, each response is rescaled between 0 and 1. Disable with rescale.each.response = FALSE

2. The final environmental suitability is calculated according to the chosen species.type. By default, the final suitability is rescaled between 0 and 1. Disable with rescale = FALSE

The SpatRaster stack containing environmental variables must have consistent names, because they will be checked with the parameters. For example, they can be named var1, var2, etc. Names can be checked and set with names(my.stack).

The parameters have to be carefully created, otherwise the function will not work:

- • Either see [formatFunctions](#page-9-1) to easily create your list of parameters
- Or create a list defined according to the following template:

list(var1 = list(fun = 'fun1', args = list(arg1 = ..., $arg2 = ...$, etc.)), $var2 = list(fun)$ $=$ 'fun2', args = list(arg1 = ..., arg2 = ..., etc.)))

It is important to keep the same names in the parameters as in the stack of environmental variables. Similarly, argument names must be identical to argument names in the associated function (e.g., if you use fun = 'dnorm', then args should look like list(mean = 0 , sd = 1)). See the example section below for more examples.

Any response function that can be applied to the environmental variables can be chosen here. Several functions are proposed in this package: [linearFun](#page-26-1), [logisticFun](#page-27-1) and [quadraticFun](#page-31-1). Another classical example is the normal distribution: [stats::dnorm\(\)](#page-0-0). Users can also create and use their own functions very easily.

If rescale.each.response = TRUE, then the probability response to each variable will be normalised between 0 and 1 according to the following formula: Prescaled = $(P - min(P)) / (max(P))$ - min (P)) This rescaling has a strong impact on response functions, so users may prefer to use rescale.each.response = FALSE and apply their own rescaling within their response functions.

Value

a list with 3 elements:

- approach: the approach used to generate the species, *i.e.*, "response"
- details: the details and parameters used to generate the species
- suitab.raster: the raster containing the environmental suitability of the virtual species

The structure of the virtualspecies object can be seen using str()

Author(s)

Boris Leroy <leroy.boris@gmail.com> with help from C. N. Meynard, C. Bellard & F. Courchamp

See Also

[generateSpFromPCA](#page-20-1) to generate a virtual species with a PCA approach

```
# Create an example stack with two environmental variables
a \leq -\text{matrix}(\text{rep}(\text{dnorm}(1:100, 50, sd = 25)),nrow = 100, ncol = 100, byrow = TRUE)
env <- c(rast(a * dnorm(1:100, 50, sd = 25)),
         rast(a * 1:100))
names(env) <- c("variable1", "variable2")
plot(env) # Illustration of the variables
# Easy creation of the parameter list:
# see in real time the shape of the response functions
```

```
sd = 1e-04,
                              variable2 = c(fun = 'linearFun', a = 1, b = 0)# If you provide env, then you can see the shape of response functions:
parameters <- formatFunctions(x = env,
                             variable1 = c(fun = 'dnorm', mean = 1e-04,sd = 1e-04,
                              variable2 = c(fun = 'linearFun', a = 1, b = 0)# Generation of the virtual species
sp1 <- generateSpFromFun(env, parameters)
sp1
par(mfrow = c(1, 1))plot(sp1)
# Manual creation of the parameter list
# Note that the variable names are the same as above
parameters <- list(variable1 = list(fun = 'dnorm',
                                    args = list(mean = 0.00012,sd = 0.0001),
                  variable2 = list(fun = 'linearFun',
                                    args = list(a = 1, b = 0)))# Generation of the virtual species
sp1 <- generateSpFromFun(env, parameters, plot = TRUE)
sp1
plot(sp1)
```
generateSpFromPCA *Generate a virtual species distribution with a PCA of environmental variables*

Description

This functions generates a virtual species distribution by computing a PCA among environmental variables, and simulating the response of the species along the two first axes of the PCA. The response to axes of the PCA is determined with gaussian functions.

Usage

```
generateSpFromPCA(
  raster.stack,
  rescale = TRUE,
  niche.breadth = "any",
  axes = c(1, 2),means = NULL,sds = NULL,pca = NULL,
  sample.points = FALSE,
```

```
nb.points = 10000,
  plot = TRUE
\lambda
```
Arguments

Details

[Online tutorial for this function](http://borisleroy.com/virtualspecies_tutorial/03-PCA.html)

This function proceeds in 3 steps:

- 1. A PCA of environmental conditions is generated
- 2. Gaussian responses to the first two axes are computed
- 3. These responses are multiplied to obtain the final environmental suitability

If rescale = TRUE, the final environmental suitability is rescaled between 0 and 1, with the formula $\frac{\tan x - \sin x}{\tan x - \sin x}$.

The shape of gaussian responses can be randomly generated by the function or defined manually by choosing means and sds. The random generation is constrained by the argument niche.breadth, which controls the range of possible standard deviation values. This range of values is based on a fraction of the axis:

• "any": the standard deviations can have values from 1% to 50% of axes' ranges. For example if the first axis of the PCA ranges from -5 to +5, then sd values along this axis can range from 0.1 to 5.

- • "narrow": the standard deviations are limited between 1% and 10% of axes' ranges. For example if the first axis of the PCA ranges from -5 to $+5$, then sd values along this axis can range from 0.1 to 1.
- "wide": the standard deviations are limited between 10% and 50% of axes' ranges. For example if the first axis of the PCA ranges from -5 to $+5$, then sd values along this axis can range from 1 to 5.

Value

a list with 3 elements:

- approach: the approach used to generate the species, *i.e.*, "pca"
- details: the details and parameters used to generate the species
- suitab.raster: the virtual species distribution, as a SpatRaster object containing the environmental suitability

The structure of the virtualspecies object can be seen using str()

Note

To perform the PCA, the function has to transform the raster into a matrix. This may not be feasible if the raster is too large for the computer's memory. In this case, you should perform the PCA on a sample of your raster with set sample.points = TRUE and choose the number of points to sample with nb.points.

Author(s)

Boris Leroy <leroy.boris@gmail.com>

with help from C. N. Meynard, C. Bellard & F. Courchamp

See Also

[generateSpFromFun](#page-17-1) to generate a virtual species with the responses to each environmental variables.

```
# Create an example stack with four environmental variables
a \leq -\text{matrix}(\text{rep}(\text{dnorm}(1:100, 50, sd = 25)),nrow = 100, ncol = 100, byrow = TRUE)
env <- c(rast(a * dnorm(1:100, 50, sd = 25)),rast(a * 1:100),
             rast(a * logisticFun(1:100, alpha = 10, beta = 70)),
             rast(t(a)))names(env) <- c("var1", "var2", "var3", "var4")
plot(env) # Illustration of the variables
```

```
# Generating a species with the PCA
generateSpFromPCA(raster.stack = env)
# The top part of the plot shows the PCA and the response functions along
# the two axes.
# The bottom part shows the probabilities of occurrence of the virtual
# species.
# Defining manually the response to axes
generateSpFromPCA(raster.stack = env,
           means = c(-2, 0),
           sds = c(0.6, 1.5)# This species can be seen as occupying intermediate altitude ranges of a
# conic mountain.
# Beyond the first two axes
generateSpFromPCA(raster.stack = env,
                  axes = c(1, 3)sp <- generateSpFromPCA(raster.stack = env,
                  axes = 1:3)
plotResponse(sp, axes = c(1, 2))
plotResponse(sp, axes = c(1, 3))
plotsP} plotResponse(sp, axes = c(2, 3))
```
limitDistribution *Limit a virtual species distribution to a defined area*

Description

This function is designed to limit species distributions to a subsample of their total distribution range. It will thus generate a species which is not at the equilibrium with its environment (i.e., which did not occupy the full range of suitable environmental conditions).

This function basically takes any type of raster and will limit values above 0 to areas where the species is allowed to disperse.

Usage

```
limitDistribution(x, geographical.limit = "extent", area = NULL, plot = TRUE)
```
limitDistribution 25

Arguments

Details

[Online tutorial for this function](http://borisleroy.com/virtualspecies_tutorial/08-dispersallimitation.html)

How the function works:

The function will remove occurrences of the species outside the chosen area:

- NA are kept unchanged
- 0 are kept unchanged
- values > 0 within the limits of area are kept unchanged
- values > 0 outside the limits of area are set to 0

How to define the area in which the range is limited:

You can choose to limit the distribution range of the species to:

1. a particular country, region or continent (assuming your raster has the WGS84 projection): Set the argument geographical.limit to "country", "region" or "continent", and provide the name(s) of the associated countries, regions or continents to area (see examples).

List of possible area names:

- Countries: type unique(rnaturalearth::ne_countries(returnclass ='sf')\$sovereignt) in the console
- Regions: "Africa", "Antarctica", "Asia", "Oceania", "Europe", "Americas"
- Continents: "Africa", "Antarctica", "Asia", "Europe", "North America", "Oceania", "South America"
- 2. a polygon:

Set geographical.limit to "polygon", and provide your polygon to area.

3. a raster:

Set geographical.limit to "raster", and provide your raster to area. Your raster values should be 1 (suitable area), 0 (unsuitable area) or NA (outside your mask).

4. an extent object:

Set geographical.limit to "extent", and either provide your extent object to area, or leave it NULL to draw an extent on the map.

Value

a list containing 7 elements:

- approach: the approach used to generate the species, *i.e.*, "response"
- details: the details and parameters used to generate the species
- suitab.raster: the virtual species distribution, as a Raster object containing the environmental suitability)
- PA.conversion: the parameters used to convert the suitability into presence-absence
- pa. raster: the presence-absence map, as a Raster object containing 0 (absence) $/1$ (presence) / NA
- geographical.limit: the method used to limit the distribution and the area in which the distribution is restricted
- occupied.area: the area occupied by the virtual species as a Raster of presence-absence

The structure of the virtualspecies object can be seen using str()

Author(s)

Boris Leroy <leroy.boris@gmail.com>

with help from C. N. Meynard, C. Bellard & F. Courchamp

```
# Create an example stack with six environmental variables
a \leq - matrix(rep(dnorm(1:100, 50, sd = 25)),
           nrow = 100, ncol = 100, byrow = TRUE)
env <- c(rast(a * dnorm(1:100, 50, sd = 25)),
        rast(a * 1:100),
        rast(a * logisticFun(1:100, alpha = 10, beta = 70)),
        rast(t(a)),
        rast(exp(a)),
        rast(log(a)))
names(env) \leq paste("Var", 1:6, sep = "")
# More than 6 variables: by default a PCA approach will be used
sp <- generateRandomSp(env)
# limiting the distribution to a specific extent
limit <- ext(1, 50, 1, 50)
limitDistribution(sp, area = limit)
# Example of a raster of habitat patches
habitat.raster <- setValues(sp$pa.raster,
                            sample(c(0, 1), size = recall(sp$pa.raster),replace = TRUE))
plot(habitat.raster) # 1 = suitable habitat; 0 = unsuitable habitat
```
linearFun 27

```
sp <- limitDistribution(sp, geographical.limit = "raster", area = habitat.raster)
par(mfrow = c(2, 1))plot(sp$pa.raster)
plot(sp$occupied.area) # Species could not occur in many cells because
# habitat patches were unsuitable
```
linearFun *Linear function*

Description

A simple linear function of the form

 $ax + b$

Usage

linearFun(x, a, b)

Arguments

Value

a numeric value or vector resulting from the function

Author(s)

Boris Leroy <leroy.boris@gmail.com> Maintainer: Boris Leroy <leroy.boris@gmail.com>

See Also

[logisticFun](#page-27-1), [quadraticFun](#page-31-1)

```
x \le -1:100y \le -\text{linearFun}(x, a = 0.5, b = 0)plot(y \sim x, type = "l")
```
logisticFun *Logistic function*

Description

A simple logistic function of the form

$$
\frac{1}{1+e^{\frac{x-\beta}{\alpha}}}
$$

Usage

logisticFun(x, alpha, beta)

Arguments

Details

The value of beta determines the 'threshold' of the logistic curve (i.e. the inflexion point).

The value of alpha determines the slope of the curve (see examples):

- alpha very close to 0 will result in a threshold-like response.
- Values of alpha with the same order of magnitude as the range of x (e.g., the range of $x / 10$) will result in a logistic function.
- alpha very far from 0 will result in a linear function.

Value

a numeric value or vector resulting from the function

Author(s)

Boris Leroy <leroy.boris@gmail.com>

Maintainer: Boris Leroy <leroy.boris@gmail.com>

See Also

[linearFun](#page-26-1), [quadraticFun](#page-31-1)

plotResponse 29

Examples

```
x \le -1:100y \leftarrow logisticFun(x, alpha = -10, b = 50)
plot(y \sim x, type = "l")# The effect of alpha:
y1 \le -\text{logisticFun}(x, \text{ alpha} = -0.01, \text{ b} = 50)y2 \leq -\text{logisticFun}(x, \text{ alpha} = -10, \text{ b} = 50)y3 \leq -\text{logisticFun}(x, \text{ alpha} = -1000, \text{ b} = 50)par(mfrow = c(1, 3))plot(y1 ~ ~ x, ~ type = "1", main = expression(alpha %->% 0))
plot(y2 \sim x, type = "l", main = expression(alpha %\sim% range(x)/10))
plot(y3 ~ x, type = "l", main = expression(alpha % > % infinity))
```
plotResponse *Visualise the response of the virtual species to environmental variables*

Description

This function plots the relationships between the virtual species and the environmental variables. It requires either the output from [generateSpFromFun](#page-17-1), [generateSpFromPCA](#page-20-1), [generateRandomSp](#page-11-1), or a manually defined set of environmental variables and response functions.

Usage

```
plotResponse(
 x,
 parameters = NULL,
 approad - NULL,rescale = NULL,
 axes.to.plot = NULL,
 no.plot.reset = FALSE,
  rescale.each.response = NULL,
  ...
)
```
Arguments

Details

If you provide the output from [generateSpFromFun](#page-17-1), [generateSpFromPCA](#page-20-1) or [generateRandomSp](#page-11-1) then the function will automatically make the appropriate plots.

Otherwise, you can provide a raster layer/stack of environmental variables to x and a list of functions to parameters to perform the plot. In that case, you have to specify the approach: "reponse" or "PCA":

- if approach = "response": Provide to parameters a list exactly as defined in [generateSpFromFun](#page-17-1): list($var1 = list(fun = 'fun1', args = list(arg1 = ... , arg2 = ... , etc.)), var2 = list(fun$ $=$ 'fun2', args = list(arg1 = ..., arg2 = ..., etc.)))
- if approach = "PCA": Provide to parameters a list containing the following elements:
	- pca: a dudi.pca object computed with [dudi.pca](#page-0-0)
	- means: a vector containing two numeric values. Will be used to define the means of the gaussian response functions to the axes of the PCA.
	- sds a vector containing two numeric values. Will be used to define the standard deviations of the gaussian response functions to the axes of the PCA.

Author(s)

Boris Leroy <leroy.boris@gmail.com>

with help from C. N. Meynard, C. Bellard & F. Courchamp

```
# Create an example stack with four environmental variables
a \leq -\text{matrix}(\text{rep}(\text{dnorm}(1:100, 50, sd = 25)),nrow = 100, ncol = 100, byrow = TRUE)
env <- c(rast(a * dnorm(1:100, 50, sd = 25)),rast(a * 1:100),
         rast(a * logisticFun(1:100, alpha = 10, beta = 70)),
         rast(t(a)))names(env) <- c("var1", "var2", "var3", "var4")
# Per-variable response approach:
parameters \leq formatFunctions(var1 = c(fun = 'dnorm', mean = 0.00012,
                                         sd = 0.0001,
                               var2 = c(fun = 'linearFun', a = 1, b = 0),
```
var3 = $c(fun = 'quadraticFun', a = -20, b = 0.2,$ $c = \emptyset$, var4 = $c(fun = 'logisticFun', alpha = -0.001,$ $beta = 0.002)$ sp1 <- generateSpFromFun(env, parameters, plot = TRUE) plotResponse(sp1) # PCA approach: sp2 <- generateSpFromPCA(env, plot = FALSE) $par(mfrow = c(1, 1))$ plotResponse(sp2)

```
plotSuitabilityToProba
```
Visualise the function that was used to transform environmental suitability into probability of occurrence

Description

This function plots the relationships between the environmental suitability and the probability of occurrence, which is used to generate the presence- absence distribution. It requires the output from [convertToPA](#page-3-1).

Usage

```
plotSuitabilityToProba(sp, add = FALSE, ...)
```
Arguments

Author(s)

Boris Leroy <leroy.boris@gmail.com>

```
# Create an example stack with two environmental variables
a \leq -\text{matrix}(\text{rep}(\text{dnorm}(1:100, 50, sd = 25)),nrow = 100, ncol = 100, byrow = TRUE)
env <- c(rast(a * dnorm(1:100, 50, sd = 25)),rast(a * 1:100))
names(env) <- c("variable1", "variable2")
```

```
parameters \leq formatFunctions(variable1 = c(fun = 'dnorm', mean = 1e-04,
                                             sd = 1e-04,
                              variable2 = c(fun = 'linearFun', a = 1, b = 0))# Generation of the virtual species
sp1 <- generateSpFromFun(env, parameters)
sp1
# Converting to presence-absence, probablistic method, logistic conversion
# A species with a low prevalence:
sp1.lowprev <- convertToPA(sp1, species.prevalence = 0.1)
plotSuitabilityToProba(sp1.lowprev)
# A species with a high prevalence:
sp1.highprev <- convertToPA(sp1, species.prevalence = 0.9)
plotSuitabilityToProba(sp1.lowprev)
# Converting to presence-absence, probablistic method, linear conversion
# A species with a low prevalence:
sp1.lowprev <- convertToPA(sp1, species.prevalence = 0.1,
                           prob.method = "linear")
plotSuitabilityToProba(sp1.highprev)
# A species with a high prevalence:
sp1.highprev <- convertToPA(sp1, species.prevalence = 0.9,
                           prob.method = "linear")
plotSuitabilityToProba(sp1.highprev)
```
quadraticFun *Quadratic function*

Description

A simple quadratic function of the form

$$
ax^2 + bx + c
$$

Usage

quadraticFun(x, a, b, c)

Arguments

removeCollinearity 33

Value

a numeric value or vector resulting from the function

Author(s)

Boris Leroy <leroy.boris@gmail.com>

Maintainer: Boris Leroy <leroy.boris@gmail.com>

See Also

[linearFun](#page-26-1), [quadraticFun](#page-31-1)

Examples

```
x \le -1:100y \leq quadraticFun(x, a = 2, b = 2, c = 3)
plot(y \sim x, type = "l")
```
removeCollinearity *Remove collinearity among variables of a raster stack*

Description

This functions analyses the correlation among variables of the provided stack of environmental variables (using Pearson's R), and can return a vector containing names of variables that are not colinear, or a list containing grouping variables according to their degree of collinearity.

Usage

```
removeCollinearity(
  raster.stack,
 multicollinearity.cutoff = 0.7,
  select.variables = FALSE,
  sample.points = FALSE,
 nb.points = 10000,
 plot = FALSE,
 method = "pearson"
)
```
Arguments

Details

This function uses the Pearson's correlation coefficient to analyse correlation among variables. This coefficient is then used to compute a distance matrix, which in turn is used it compute an ascendant hierarchical classification, with the '*complete*' method (see [hclust](#page-0-0)). If at least one correlation above the multicollinearity.cutoff is detected, then the variables will be grouped according to their degree of correlation.

If select.variables = TRUE, then the function will return a vector containing variables that are not colinear. The variables not correlated to any other variables are automatically included in this vector. For each group of colinear variables, one variable will be randomly chosen and included in this vector.

Value

a vector of non correlated variables, or a list where each element is a group of non correlated variables.

Author(s)

Boris Leroy <leroy.boris@gmail.com>

with help from C. N. Meynard, C. Bellard & F. Courchamp

```
# Create an example stack with six environmental variables
a \le - matrix(rep(dnorm(1:100, 50, sd = 25)),
            nrow = 100, ncol = 100, byrow = TRUE)
```
sampleOccurrences 35

```
env <- c(rast(a * dnorm(1:100, 50, sd = 25)),
         rast(a * 1:100),
        rast(a * logisticFun(1:100, alpha = 10, beta = 70)),
        rast(t(a)),
        rast(exp(a)),
        rast(log(a)))
names(env) <- paste("Var", 1:6, sep = "")
# Defaults settings: cutoff at 0.7
removeCollinearity(env, plot = TRUE)
# Changing cutoff to 0.5
removeCollinearity(env, plot = TRUE, multicollinearity.cutoff = 0.5)
# Automatic selection of variables not intercorrelated
removeCollinearity(env, plot = TRUE, select.variables = TRUE)
# Assuming a very large raster file: selecting a subset of points
removeCollinearity(env, plot = TRUE, select.variables = TRUE,
                   sample.points = TRUE, nb.points = 5000)
```
sampleOccurrences *Sample occurrences in a virtual species distribution*

Description

This function samples occurrences/records (presence only or presence-absence) within a species distribution, either randomly or with a sampling bias. The sampling bias can be defined manually or with a set of predefined biases.

Usage

```
sampleOccurrences(
 x,
 n,
  type = "presence only",
  extract.probability = FALSE,
  sampling.area = NULL,
 detection.probability = 1,
  correct.by.suitability = FALSE,
  error.probability = 0,
 bias = "no.bias",
 bias.strength = 50,
 bias.area = NULL,
 weights = NULL,sample.prevalence = NULL,
 replacement = FALSE,
```
plot = TRUE \mathcal{L}

Arguments

Details

[Online tutorial for this function](http://borisleroy.com/virtualspecies_tutorial/07-sampleoccurrences.html)

How the function works:

The function randomly selects n cells in which samples occur. If a bias is chosen, then the selection of these cells will be biased according to the type and strength of bias chosen. If the sampling is of type "presence only", then only cells where the species is present will be chosen. If the sampling is of type "presence-absence", then all non-NA cells can be chosen.

The function then samples the species inside the chosen cells. In cells where the species is present the species will always be sampled unless the parameter detection.probability is lower than 1. In that case the species will be sampled with the associated probability of detection.

In cells where the species is absent (in case of a "presence-absence" sampling), the function will always assign absence unless error.probability is greater than 1. In that case, the species can be found present with the associated probability of error. Note that this step happens AFTER the detection step. Hence, in cells where the species is present but not detected, it can still be sampled due to a sampling error.

How to restrict the sampling area:

Use the argument sampling.area:

- Provide the name (s) (or a combination of names) of country(ies), region(s) or continent(s). Examples:
	- sampling.area = "Africa"
	- sampling.area = c("Africa", "North America", "France")
- Provide a polygon (SpatialPolygons or SpatialPolygonsDataFrame of package sp)
- Provide an extent object

How the sampling bias works:

The argument bias.strength indicates the strength of the bias. For example, a value of 50 will result in 50 times more samples within the bias.area than outside. Conversely, a value of 0.5 will result in half less samples within the bias.area than outside.

How to choose where the sampling is biased:

You can choose to bias the sampling in:

1. a particular country, region or continent (assuming your raster has the WGS84 projection): Set the argument bias to "country", "region" or "continent", and provide the name(s) of the associated countries, regions or continents to bias.area (see examples).

List of possible bias.area names:

- Countries: type unique(rnaturalearth::ne_countries(returnclass ='sf')\$sovereignt) in the console
- Regions: "Africa", "Antarctica", "Asia", "Oceania", "Europe", "Americas"
- • Continents: "Africa", "Antarctica", "Asia", "Europe", "North America", "Oceania", "South America"
- 2. a polygon:

Set bias to "polygon", and provide your polygon to area.

3. an extent object:

Set bias to "extent", and either provide your extent object to bias. area, or leave it NULL to draw an extent on the map.

Otherwise you can enter a raster of sampling probability. It can be useful if you want to increase likelihood of samplings in areas of high suitability (simply enter the suitability raster in weights; see examples below), or if you want to define sampling biases manually, *e.g.* to to create biases along roads. In that case you have to provide to weights a raster layer in which each cell contains the probability to be sampled.

The [.Random.seed](#page-0-0) and [RNGkind](#page-0-0) are stored as [attributes](#page-0-0) when the function is called, and can be used to reproduce the results as shown in the examples (though it is preferable to set the seed with set. seed before calling sampleOccurrences() and to then use the same value in set. seed to reproduce results later. Note that reproducing the sampling will only work if the same original distribution map is used.

Value

a list with 8 elements:

- type: type of occurrence sampled (presence-absences or presence-only)
- sample.points: data.frame containing the coordinates of samples, true and sampled observations (i.e, 1, 0 or NA), and, if asked, the true environmental suitability in sampled locations
- detection.probability: the chosen probability of detection of the virtual species
- error.probability: the chosen probability to assign presence in cells where the species is absent
- bias: if a bias was chosen, then the type of bias and the associated area will be included.
- replacement: indicates whether multiple samples could occur in the same cells
- original.distribution.raster: the distribution raster from which samples were drawn
- sample.plot: a recorded plot showing the sampled points overlaying the original distribution.

Note

Setting sample.prevalence may at least partly override bias, e.g. if bias is specified with extent to an area that contains no presences, but sample prevalence is set to > 0 , then cells outside of the biased sampling extent will be sampled until the number of presences required by sample.prevalence are obtained, after which the sampling of absences will proceed according to the specified bias.

Author(s)

Boris Leroy <leroy.boris@gmail.com> Willson Gaul <wgaul@hotmail.com> with help from C. N. Meynard, C. Bellard & F. Courchamp

sampleOccurrences 39

```
# Create an example stack with six environmental variables
a \leq -\text{matrix}(\text{rep}(\text{dnorm}(1:100, 50, sd = 25)),nrow = 100, ncol = 100, byrow = TRUE)
env <- c(rast(a * dnorm(1:100, 50, sd = 25)),
         rast(a * 1:100),
         rast(a * logisticFun(1:100, alpha = 10, beta = 70)),
        rast(t(a)),
        rast(exp(a)),
        rast(log(a)))
names(env) <- paste("Var", 1:6, sep = "")
# More than 6 variables: by default a PCA approach will be used
sp <- generateRandomSp(env, niche.breadth = "wide")
# Sampling of 25 presences
sampleOccurrences(sp, n = 25)
# Sampling of 30 presences and absences
sampleOccurrences(sp, n = 30, type = "presence-absence")
# Reducing of the probability of detection
sampleOccurrences(sp, n = 30, type = "presence-absence",
                  detection.probability = 0.5)
# Further reducing in relation to environmental suitability
sampleOccurrences(sp, n = 30, type = "presence-absence",
                  detection.probability = 0.5,
                  correct.by.suitability = TRUE)
# Creating sampling errors (far too much)
sampleOccurrences(sp, n = 30, type = "presence-absence",
                  error.probability = 0.5)
# Introducing a sampling bias (oversampling)
biased.area <- ext(1, 50, 1, 50)
sampleOccurrences(sp, n = 50, type = "presence-absence",
                  bias = "extent",
                  bias.area = biased.area)
# Showing the area in which the sampling is biased
plot(biased.area, add = TRUE)
# Introducing a sampling bias (no sampling at all in the chosen area)
biased.area <- ext(1, 50, 1, 50)
sampleOccurrences(sp, n = 50, type = "presence-absence",
                  bias = "extent",
                  bias.strength = 0,
                  bias.area = biased.area)
# Showing the area in which the sampling is biased
plot(biased.area, add = TRUE)
```

```
samps <- sampleOccurrences(sp, n = 50,
                           bias = "manual",
                           weights = sp$suitab.raster)
plot(sp$suitab.raster)
points(samps$sample.points[, c("x", "y")])
# Create a sampling bias so that more presences are sampled in areas with
# higher suitability
# Reproduce sampling based on the saved .Random.seed from a previous result
samps <- sampleOccurrences(sp, n = 100,
                           type = "presence-absence",
                           detection.probability = 0.7,
                           bias = "extent",
                           bias.strength = 50,
                           bias.area = biased.area)
# Reset the random seed using the value saved in the attributes
.Random.seed <- attr(samps, "seed")
reproduced_samps <- sampleOccurrences(sp, n = 100,
                                      type = "presence-absence",
                                      detection.probability = 0.7,
                                      bias = "extent",
                                      bias.strength = 50,
                                      bias.area = biased.area)
identical(samps$sample.points, reproduced_samps$sample.points)
```
synchroniseNA *Synchronise NA values among layers of a stack*

Description

This function ensures that cells containing NAs are the same among all the layers of a raster stack, i.e.that for any given pixel of the stack, if one layer has a NA, then all layers should be set to NA for that pixel.

Usage

```
synchroniseNA(x)
```
Arguments

x a raster stack object which needs to be synchronised.

Details

This function can do that in two different ways; if your computer has enough RAM a fast way will be used; otherwise a slower but memory-safe way will be used.

synchroniseNA 41

Author(s)

Boris Leroy <leroy.boris@gmail.com>

with help from C. N. Meynard, C. Bellard & F. Courchamp

```
# Creation of a stack with different NAs across layers
m <- matrix(nr = 10, nc = 10, 1:100)
r1 \leftarrow rast(m)r2 < -\text{rast}(m)r1[sample(1:ncell(r1), 20)] <- NA
r2[sample(1:ncell(r2), 20)] <- NA
s < -c(r1, r2)
```

```
# Effect of the synchroniseNA() function
plot(s) # Not yet synchronised
s <- synchroniseNA(s)
plot(s) # Synchronised
```
Index

.Random.seed, *[38](#page-37-0)* ade4, *[3](#page-2-0)* attributes, *[38](#page-37-0)* bca, *[16](#page-15-0)* betaFun, [3](#page-2-0) convertToPA, *[2](#page-1-0)*, [4,](#page-3-0) *[13,](#page-12-0) [14](#page-13-0)*, *[31](#page-30-0)* custnorm, *[4](#page-3-0)*, [9](#page-8-0) dnorm, *[11](#page-10-0)* dudi.pca, *[22](#page-21-0)*, *[30](#page-29-0)* formatFunctions, *[2](#page-1-0)*, [10,](#page-9-0) *[20](#page-19-0)* generateRandomSp, *[2](#page-1-0)*, *[4,](#page-3-0) [5](#page-4-0)*, [12,](#page-11-0) *[25](#page-24-0)*, *[29,](#page-28-0) [30](#page-29-0)* generateSpFromBCA, [15,](#page-14-0) *[16](#page-15-0)* generateSpFromFun, *[2](#page-1-0)*, *[4,](#page-3-0) [5](#page-4-0)*, *[10,](#page-9-0) [11](#page-10-0)*, *[13](#page-12-0)*, *[17](#page-16-0)*, [18,](#page-17-0) *[23](#page-22-0)*, *[25](#page-24-0)*, *[29,](#page-28-0) [30](#page-29-0)* generateSpFromPCA, *[2](#page-1-0)*, *[4,](#page-3-0) [5](#page-4-0)*, *[13](#page-12-0)*, *[16,](#page-15-0) [17](#page-16-0)*, *[20](#page-19-0)*, [21,](#page-20-0) *[25](#page-24-0)*, *[29,](#page-28-0) [30](#page-29-0)* hclust, *[34](#page-33-0)* limitDistribution, *[2](#page-1-0)*, [24](#page-23-0) linearFun, *[4](#page-3-0)*, *[11](#page-10-0)*, *[20](#page-19-0)*, [27,](#page-26-0) *[28](#page-27-0)*, *[33](#page-32-0)* logisticFun, *[5,](#page-4-0) [6](#page-5-0)*, *[13](#page-12-0)*, *[20](#page-19-0)*, *[27](#page-26-0)*, [28](#page-27-0) par, *[30,](#page-29-0) [31](#page-30-0)* plot, *[30,](#page-29-0) [31](#page-30-0)* plotResponse, *[3](#page-2-0)*, [29](#page-28-0) plotSuitabilityToProba, [31](#page-30-0) quadraticFun, *[4](#page-3-0)*, *[20](#page-19-0)*, *[27,](#page-26-0) [28](#page-27-0)*, [32,](#page-31-0) *[33](#page-32-0)* removeCollinearity, *[3](#page-2-0)*, [33](#page-32-0) rnaturalearth, *[3](#page-2-0)* RNGkind, *[38](#page-37-0)* sampleOccurrences, *[2](#page-1-0)*, [35](#page-34-0) set.seed, *[38](#page-37-0)* terra, *[3](#page-2-0)*

stats::dnorm(), *[20](#page-19-0)* synchroniseNA, *[3](#page-2-0)*, [40](#page-39-0)

virtualspecies-package, [2](#page-1-0)